从0打卡leetcode之day 3 -- 最大子序列和

前言

深知自己在算法方面上很菜,于是打算通过打卡的方式,逼自己一把。每天在leetcode上打卡,并且把自己的想法分享出来。这将是一段漫长而又艰辛的旅程。如果你也想和我一起走上一条充满艰辛的航路,那么,别犹豫了,上车吧,一起学习一起探讨。


从零打卡leetcode之day 3

1
2
3
4
5
6
7
题目描述:
给定一个int类型的数组,求最大子序列的和。
也就是说,从这个数组中截取一个子数组,这个子数组的元素和最大。

例如:
-1 20 -4 14 -4 -2
这个数组的最大字序列和为30。即20 -4 14。

解题

1.初级版解法

对于这道题,其实我们可以采取遍历所有可能的组合,然后再比较哪种组合的和最大。

也就是说,我们可以找出所有子序列,然后逐个比较。代码如下。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
public int solve(int[] arrs){

int max = 0;//用来存放目标子序列的和

int temp = 0;//用来存每个子序列的和

for(int i = 0; i < arrs.length; i++){

for(int j = i; j < arrs.length; j++){

temp = 0;

//计算子序列的和
for(int k = 0; k < arrs.length; k++){
temp += arrs[k];
}
//进行比较
if(temp > max){
max = temp;
}

}
}

return max;
}`

在这三个循环中,外面两个循环枚举出所有子序列,第三个循环计算子序列的和。

看到三个for循环,时间复杂度的O(n3)。这速度,实在是太慢了。我们来优化优化。

2.进阶版

其实,你仔细看一下里面的那两层for循环,会发现其实可以把它们合并成一个for循环的。

也就是说,我们可以在枚举所有子序列的过程中,是可以一边进行数据处理的。还是直接看代码好理解点。如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
public int solve2(int[] arrs){

int max = 0;

int temp = 0;

for(int i = 0; i < arrs.length; i++){

temp = 0;

for(int j = i; j < arrs.length; j++){

//一边处理数据
temp += arrs[j];

//进行比较选择

if(max < temp){

max = temp;
}
}
}

return temp;
}

该方法用了两个for循环,时间复杂度为O(n2),相对来说好了一点。

3.再次优化进阶

这次,我们可以使用递归的思想来处理。递归最重要的就是要找到:

  1. 递归的结束条件
  2. 把问题分解成若干个子问题。

对于这道题,其实我们可以把序列分成左右两部分。那么,最大子序列和的位置会出现在以下三种情况:

  1. 子序列完全在左半部分。
  2. 子序列完全在右半部分。
  3. 一部分在左,一部分在右。

所以我们只要分别求出左半部分的最大子序列和、右半部分的最大子序列和(注意,问题已经转化为求左右两部分的最大子序列和了,也就是说问题被分解成若干子问题了)、以及跨越左右两部分的最大子序列和。最后比较三者之中哪个比较大就可以了。

如何求解左半部分和右半部分的最大子序列?

其实道理一样,把左半部分和右半部分再次分解左右两部分就可以了。

那么,如何求解跨越左右两部分的最大子序列呢?

其实只要求出包含左半部分中最右边元素的子序列的最大和,以及求出包含右半部分中最左边元素的子序列的最大和,然后让两者相加,即可求出跨域左右两部分的最大子序列和了。

子问题已经分解出来了,那么递归的结束条件是什么?

我们把数组分成左右两部分,其实当左右两部分只有一个元素时,递归结束。

这道题的递归思路算是找出来了,不过,代码实现?假如你对递归不大熟悉的话,可能在实现上还是有那么点困难的。对于递归的学习,大家也可以看我写的关于递归与动态规划的几篇文章。

我就直接抛代码了。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
//递归版本
public int solve3(int[] arrs, int left, int right){
int max = 0;

//表示只有一个元素,无需在分解
if(left == right){
//为什么?因为低于0的数肯定不可以是最大值的
//大不了最大值为0
max = arrs[left] >= 0 ? arrs[left]:0;
}else{

int center = (left + right)/2;
//求解左半部分最大子序列
int leftMax = solve3(arrs, left, center);
//求解右半部分最大子序列
int rightMax = solve3(arrs, center+1, right);

//求解kua跨越左右两部分的最大子序列
//1.求包含左部分最右元素的最大和
int l = 0;
int l_max = 0;
for(int i = center; i >= left; i--){
l += arrs[i];
if(l > l_max){
l_max = l;
}
}

//2.求包含右部分最左元素的最大和
int r = 0;
int r_max = 0;
for(int i = center+1; i <= right; i++){
r += arrs[i];
if(r > r_max){
r_max = r;
}
}
//跨越左右两部分的最大子序列
max = l_max + r_max;

//取三者最大值
if(max < leftMax) max = leftMax;
if(max < rightMax) max = rightMax;
}

return max;
}

递归求解方法的时间复杂度为O(nlgn)。这速度,比第一种做法,不知道快了几个级别….

递归解法可以说是很快的了

但是,等等,我还是不满意…

4.最终版:动态规划

接下来的最终版,时间复杂度可以缩减到O(n), 虽然说是采用了动态规划的思想,不过,我觉得你没学过动态规划也可以看懂。

假如我给你

1
1 2 -4 5 6

五个元素,你在计算前面三个元素的时候,即

1 + 2 + -4 = -1

发现前面三个元素的和是小于0的,那么,这个

1 2 -4

的子序列我们还要吗?显然,这个子序列的和都小于0了,我们是可以直接淘汰的。因为如果还要这个子序列的话,它和后面的5一相加,结果变成了4,我们还不如让我们的目标子序列直接从5开始呢。

先看代码吧,可能反而会好理解点

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
//基于动态规划的思想
public int solve4(int[] arrs){
int max = 0;//存放目标子序列的最大值
int temp = 0;//存放子序列的最大值

for(int i = 0; i < arrs.length; i++){
temp += arrs[i];
if(temp > max){
max = temp;
}else{
//如果这个子序列的值小于0,那么淘汰
//从后面的子序列开始算起
if(temp < 0){
temp = 0;
}
}
}
return max;
}

这道题不是leetcode上的题目,不过我觉得这道题很不错,所以拿出来分享给大家。

如果你有什么不大清楚的,欢迎微信群里讨论,当然也可以直接来问我勒。欢迎转发让更多人加入打卡行列勒。

如果这道题能对你有所帮助,不妨点个赞。哈哈